文章编号: 0258-7025(2002)Supplement-0108-03

红光(660 nm)准连续 Nd: YAG 内腔倍频激光器

王 涛^{1,2} 姚建铨¹ 李喜福¹ 郭 玲² 陈 进¹于意仲¹ 朱 孟¹ 王 鹏¹ ¹天津大学精密仪器与光电子工程学院 激光与光电子研究所教育部光电信息技术科学重点实验室, 天津 300072 ²河北工业大学机械学院, 天津 300130

提要 一种准连续 Nd: YAG 内腔倍频输出660 nm 红光激光器。采用平-平腔结构,双灯泵浦,KTP 晶体内腔倍频, 并设置声光 Q 开关,获得 660 nm 红光输出 2 W。从激光光束的有效回射率的情况分析了腔长对激光功率的影响。 关键词 红光 660 nm 激光器,KTP 晶体,Nd: YAG 内腔倍频 中图分类号 TN248.1⁺ 3 文献标识码 A

A CW Nd: YAG Intracavity Frequency-doubled Red Laser

WANG Tao^{1,2} YAO Jian-quan¹ LI Xi-fu¹ GUO Ling² CHEN Jin YU Yi-zhong¹ ZHU Meng¹ WANG Peng¹

 ¹ Optoelectronics Information Science and Technology Lab, Institute of Lasers and Optoelectronics, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072
² College of Mechanism Engineering, Hebei Industry University, Tianjin 300130

Abstract A CW Nd: YAG intracavity frequency-doubled red laser is reported in this paper. With a flat-flat laser cavity, 2 Kr-lamps pumping, KTP crystal and AO Q-switch, 2 W output power at 660 nm laser is obtained. The relationship between laser cavity length and output power is analyzed.

Key words 660 nm red laser, KTP crystal, Nd: YAG intracavity frequency-doubled

1 引 言

红光是三原色光之一,利用 KTP 晶体在 1319 nm Nd:YAG 激光腔内倍频获得660 nm 红光输出, 颇具理论及应用价值。本文介绍一种准连续 Nd: YAG 内腔倍频输出660 nm 红光激光器,它采用平-平腔结构,双灯泵浦,KTP 晶体内腔倍频,并设置声 光 Q 开关,最高稳定输出功率,单端输出 2 W,双端 输出 2.5 W。

2 系统及元件参数的选定

2.1 Nd: YAG 晶体棒及 KTP 晶体

选用 \$6 mm×110 mm 的 Nd: YAG 晶体, 两端 面镀波长为 1319 nm 和 660 nm 的增透膜。

KTP 晶体具有大的非线性系数及大的允许角、 允许温度及小的走离角,还具有破坏阈值较高、不潮 解等优点。利用 KTP 晶体内腔倍频,是获得 660 nm 红光输出的较为有效的方法之一。根据有关 KTP 晶体的相位匹配曲线,计算选定波长为 1319 nm 的匹配方向的晶体角度为: $\theta = 60.7^\circ, \varphi = 0^\circ$ 。为 尽可能获得大的模体积并与 YAG 棒模式匹配,并 充分利用晶体材料和系统能量,系统选用 8 mm×8 mm×8 mm 的 KTP 晶体,两端面镀波长为1319 nm 和 660 nm 的增透膜。

2.2 腔型选定

基于获得较大的模体积、较好的光束质量及有效的发挥声光 Q 开关的作用等综合因素,系统选用 平-平腔结构。

首先优化谐振腔,在主要器件不变的情况下,合 理的缩短腔长,可以提高激光输出功率。下面就从 腔内反射镜对 Nd:YAG 晶体棒的激光光束的有效 回射率的情况加以分析。为简明及清晰,暂略去声 光、谐波反射镜及 KTP 晶体,仅考虑全反镜及输出 镜对波长 1319 nm 的反射。

如图 1 所示, 1 为反射镜, 2 为接口铜套, 3 为 YAG 晶体棒端面, 4 为 YAG 晶体棒, 另一侧从略。 Supplement

YAG 晶体棒的两端接口铜套 ϕ 6mm×60 mm,其中 b 为粘接后铜套外端口到 YAG 晶体棒端面距离的 尺寸,L 为 ϕ 20 mm 平面全反镜距接口铜套外端口 的距离,r 为 YAG 晶体棒的半径,R 为 YAG 晶体 棒输出的光束经全反镜反射回到 YAG 晶体棒接收 平面上的总照射面的半径,其面积为 S_y。反射回 YAG 晶体棒内的激光束面积即为 YAG 晶体棒端面 面积,即为有效接收的面积 S_z。那么,称 S_y 与 S_z 的比率为有效回射率 η 。这里"反射"是主要因素, 不妨忽略其他,根据几何光学计算,推导得出:

$$\eta = \frac{S_y}{S_z} = \frac{\pi r^2}{\pi R^2} = \frac{b^2}{(4L+3b)^2}$$

据此得出,全反镜距铜套外端的距离 L 越长,有效 回射率 η 越低,铜套 b 增长, η 亦降低。也就是说,腔 长越长,有效回射率 η 越低,激光输出功率越低。实 验数据与理论计算基本吻合。

2.3 镜片镀膜及镜片支撑调整架

为形成波长 1319 nm 基频,并抑制 1064 nm 的 生成,全反镜镀对 1319 nm 高反射率膜而对 1064 nm高透射率膜。输出镜镀对660 nm高透射 率、对 1319 nm 高反射率膜。腔内设置镀 1319 nm 高透射率,660 nm 高反射率膜谐波反射镜。有效地 抑制 1064 nm 的生成,对 1319 nm 基频的形成具有 重要的作用。

为缩短腔长,首先,全反镜、谐波反射镜、输出镜 及倍频晶体的支撑调整架,全部采用新型径向调整 式光学镜片调整架,它是我们研究所的新型专利产 品,它将传统的轴向调整机构改为径向调整,极有效 地缩短了腔长。

2.4 泵浦灯及激光电源

本激光器为双氪灯抽运,激光电源为"580C型 双灯泵浦连续激光电源",额定电流 26 A,额定电压 360 V,最高电流 30 A,最高电压 400 V。

改进了抽运灯电极的连接方式,变横向连接为 竖向连接,最大限度地缩短了聚光腔的空间长度。 连同前面所述,最终腔长缩短至 390 mm。实验证 明,此举,很有效地提高了激光输出功率。

2.5 声光 Q 开关及系统冷却

声光 Q 开关,重复频率为 0~20 kHz 连续可调,最高功率输出为 125 W。其晶体端面相应镀膜。

系统中聚光腔, YAG 晶体棒, KTP 晶体及声光 Q 开关,集中采用水循环冷却。采用激光器专用制 冷机,制冷功率 5 kW,循环水流量 3 m²,出水温度 10°~30°可调,冷却效果很好,可长时间稳定工作。

2.6 激光器系统光路图

红光(660 nm)准连续 Nd: YAG 内腔倍频激光器 光路图如图2所示,1 为全反镜,2 为声光 Q 开关,3 为 聚光腔及 Nd: YAG 晶体,4 为谐波反射镜,5 为 KTP 晶体,6 为输出镜,7 为测试用棱镜,其中(1)、(3)、(4) 为经棱镜后射出的三条红光 660 nm 光路,(2)为在双 端输出时另一端(副边)红光 660 nm 的光路。

图 2 红光(660 nm)准连续 Nd: YAG 内腔倍频激光器光路图 Fig. 2 Schematic of CW Nd: YAG intracavity frequency-doubled red laser

3 系统运行及结果分析

3.1 单端输出

全反镜对 1319 nm 高反射, 而对 1064 nm 高透

射,由此有效的抑制了 1064 nm 的生成。腔内设置 谐波反射镜,与声光 Q 开关、KTP 晶体、聚光腔及 Nd:YAG 晶体棒共同构成谐振腔。激光电源双灯抽 运,供电电流 26 A,电压 250 V,声光 Q 开关重复频 率为 9 kHz、输出功率为 50 W,此时,红光 660 nm 输出功率 2 W,功率及光束稳定,激光器工作稳定。 在距输出镜 200 mm 处,测得光束直径为 3.5 mm。 通过观测得知本激光器属多模运转,其模斑中心区 域是光强的峰值区域。

当供电电流为 28.5 A、声光 Q 开关重复频率 为 9.9 kHz 时,输出功率可冲高至 2.5 W,但不稳 定。换置 660 nm 输出镜为 1319 nm 透射率 3.74% 输出镜,移出 KTP 晶体,测得 1319 nm 输出为 40 W,估计腔内基频功率与红光输出功率的转换效率 为 2.6%。

还观察到, 声光 Q 开关对红光输出功率的影响 很大, 在重复频率为 9.9 kH 时红光输出功率为最 高。声光 Q 开关的输出功率对应于红光 660 nm 输 出功率有最佳对应值, 又如红光 660 nm 输出 1.5 W 时, 声光 Q 开关的输出功率最佳对应值为 41 W。

3.2 双端输出

将单端输出的全反镜换置为 660 nm 的输出 镜,撤除谐波反射镜,即可实现双端输出,此时,谐振 腔 KTP 晶体一侧(主边)红光 660 nm 输出为 1.8 W,另一侧(副边)为 0.7 W,双端总输出 2.5 W。

在供电电流为 23 A、声光 Q 开关重复频率为 8.6 kHz 时,用棱镜测试输出红光 660 nm 的真实

性,如图 2 所示,在输出(主边)光路上放置棱镜,观 察到有 3 路红光 660 nm 输出,分别测试结果,(1)路 光为 1.6 W,(2)路为 1.5 W,(3)路为 0.2 W,(4)路 为 0.1 W。对"副边"即(2)路光的 1.5 W 进行分光 测试,红光 660 nm 仅为 0.4 W,即非红光 660 nm 频 率成分功率为 1.1 W。

4 结 论

红光(660 nm)准连续 Nd: YAG 内腔倍频激光器,系统方案合理可行,红光 660 nm 输出功率2W, 功率及光束稳定,激光器工作稳定。

新型径向调整式光学镜片调整架,有效地缩短 了腔长。实践证明,合理的缩短腔长,可以提高激光 输出功率,与理论计算吻合。

声光 Q 开关对红光 660 nm 输出功率的影响较大,在重复频率为 9.9 kHz 时输出功率为最高。

参考文献

- 姚建铨.非线性光学频率变换技术及激光调谐技术.第 一版.北京:科学出版社,1995.3
- 2 姚建铨,李 昱,薛 彬等.准连续泵浦 KTP 内腔倍频 YAG 激光器及其热效应分析.光学学报,1986,6(4): 326~331